Physics-based RNA structure prediction
نویسندگان
چکیده
Despite the success of RNA secondary structure prediction for simple, short RNAs, the problem of predicting RNAs with long-range tertiary folds remains. Furthermore, RNA 3D structure prediction is hampered by the lack of the knowledge about the tertiary contacts and their thermodynamic parameters. Low-resolution structural modeling enables us to estimate the conformational entropies for a number of tertiary folds through rigorous statistical mechanical calculations. The models lead to 3D tertiary folds at coarse-grained level. The coarse-grained structures serve as the initial structures for all-atom molecular dynamics refinement to build the final all-atom 3D structures. In this paper, we present an overview of RNA computational models for secondary and tertiary structures' predictions and then focus on a recently developed RNA statistical mechanical model-the Vfold model. The main emphasis is placed on the physics behind the models, including the treatment of the non-canonical interactions in secondary and tertiary structure modelings, and the correlations to RNA functions.
منابع مشابه
Ab initio RNA folding.
RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, the experimental determination of RNA structures through x-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovere...
متن کاملCONTRAfold: RNA secondary structure prediction without physics-based models
MOTIVATION For several decades, free energy minimization methods have been the dominant strategy for single sequence RNA secondary structure prediction. More recently, stochastic context-free grammars (SCFGs) have emerged as an alternative probabilistic methodology for modeling RNA structure. Unlike physics-based methods, which rely on thousands of experimentally-measured thermodynamic paramete...
متن کاملRNA secondary structure prediction and runtime optimization
1. Background RNA secondary structure Pseudoknots Non-coding RNA 2. CONTRAfold: Probabilistic RNA folding Overview of the algorithm Details of the algorithm Performance of CONTRAfold 3. Other RNA folding methods: Physics-based models and Stochastic Context Free Grammars Physics-based models Stochastic Context Free Grammars Advantages of CONTRAfold over these other approaches 4. How RNA folding ...
متن کاملPhysics-based de novo prediction of RNA 3D structures.
Current experiments on structural determination cannot keep up the pace with the steadily emerging RNA sequences and new functions. This underscores the request for an accurate model for RNA three-dimensional (3D) structural prediction. Although considerable progress has been made in mechanistic studies, accurate prediction for RNA tertiary folding from sequence remains an unsolved problem. The...
متن کاملPreRkTAG: Prediction of RNA Knotted Structures Using Tree Adjoining Grammars
Background: RNA molecules play many important regulatory, catalytic and structural <span style="font-variant: normal; font-style: norma...
متن کامل